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ABSTRACT 

 

 Stenosis is one of the most common causes for spinal surgery. Laminectomy 

decompression and fusion are surgical procedures prescribed for this condition. The 

intention of this work was to investigate the effects of a laminectomy decompression, 

followed by fusion, on a lumbar functional spinal unit (FSU) through in vitro dynamic 

(±8Nm at 0.125Hz) and quasi-static (±7.5Nm at 0.1Hz) biomechanical tests, for flexion, 

extension, bending and rotation motions.  

Six FSUs where disarticulated from four human cadaveric lumbar spines (63 ± 12 

years) and were tested under the following sequence: (1) intact, (2) laminectomy 

decompression, and (3) Pedicle Screw System (PSS), using a load-displacement 

controlled system. Dynamic neutral zone (NZ), dynamic neutral zone stiffness (NZS) and 

the range of motion (ROM) were the parameters evaluated.  

Since only 6 FSUs from different spinal levels were used, any effect related to 

the spinal level could not be evaluated. This limitation enforced to consider normalized 

data (with respect to intact) as an alternative analysis, but large standard deviations after 

transforming the data forced us to contemplate this “a pilot study”. 

Dynamic testing revealed that there were no significant differences in the neutral 

zone magnitude for any motion after a laminectomy decompression, while its magnitude 

for flexion-extension was significantly affected by PSS treatment (p<0.004). The change 

in dynamic NZ (normalized data) was significantly different (p<0.03) after both 

treatments for flexion-extension motion. The reduction in stiffness (normalized data) for 
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extension after a laminectomy, and the increase in stiffness (normalized data) for flexion 

and extension after PSS treatment, were both significant (p<0.03 and p<0.05, 

respectively). The ROM were not statistically significant for the three treatments, but 

normalized data showed significant differences (p<0.05) for all motions, except for right 

bending after laminectomy and right rotation after PSS. 

Non-normalized data from quasi-static testing didn’t show any statistically 

significant difference between the treatments for any motion. Normalized data suggested 

significant differences for the change in ROM for all motions at multiple load conditions, 

especially for flexion and extension. 

This pilot study suggests there may be a considerable effect of a laminectomy on 

the stability of a lumbar FSU. Dynamic data suggested the changes in neutral zone 

stiffness triggered by a laminectomy procedure may be significant for extension. PSS 

treatment increased segment’s NZ stiffness by more than double. The changes in ROM 

from quasi-static loading caused by a laminectomy decompression may be significant as 

well, especially for flexion (20%) and extension (greater than 10%).  

It is suggested that further studies involving spine biomechanics should consider 

and report, but not be limited to the following variables: exposure time of the specimen to 

room temperature, preservation and testing conditions, ligaments and joints conditions, 

testing protocol, and loading history.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Significance 

Back pain has lately become one of the most common complaints among the 

adult population. According to the National Center for Health Statistics (2006) more than 

one-quarter of the adults’ respondents reported to have suffered back pain in the past 3 

months. Similarly, Vallfors states on one of his works (as cited on the American 

Chiropractic Association [ACA], 2011) that eighty percent of the population claim to have 

experienced back pain at some point of their life. 

Low back pain can be caused by a variety of reasons, such as mechanical 

instability, soft tissue injury, bone degeneration, and spinal stenosis. Stenosis is the 

most common cause for spine surgery and its incidence in older adults is expected to 

increase over time (Deyo, 2010; Backstrom, Whitman, & Flynn, 2011). Common 

treatments for this condition are decompression, or decompression coupled with fusion 

(Kaner, Sasani, Oktenoglu, Aydin, & Ozer, 2010; Dimar, Djurasovic, & Carreon, 2005). 

Biomechanical testing has become a valuable instrument for spinal research; It 

provides information about the vertebral column behavior when is exposed to different 

loading conditions, including activities of daily living, work related activities, aging, 

injuries, and degenerative processes. In addition, in vitro biomechanical data is 

commonly included as part of the standard testing protocol for testing new surgical 

procedures and implants. The viscoelastic behavior of the spine explains how the 

displacements achieved when certain loads are applied are highly dependent on the 
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load’s rate; because of that, in vitro testing can involve dynamic and/or quasi-static 

loading, at controlled rates. Either animal or human cadaveric models can be used, 

although human models are preferred since the limitation of extrapolating the outcomes 

is less contradictory. 

The goal of any surgical procedure is to have the best outcomes through a 

minimally invasive procedure, as well as a short recovery time. The wide variety of 

decompression techniques include minimal resections, such as unilateral laminotomy, 

and more invasive procedures, such as bilateral facetectomy combined with 

laminectomy (Zander, Rohlmann, Klöckner, & Bergmann, 2003). The extent of the 

resection for achieving an adequate decompression would depend on the severity of the 

stenosis and the surgeon’s criterion.  

It has been demonstrated that a complete laminectomy (which includes the 

resection of the spinous process, the lamina and both supraspinous and interspinous 

ligaments) can be effectively performed, in terms of decompression, without 

compromising the integrity of the facet joints (Musacchio et al., 2007). However, in vitro 

biomechanical data about intervertebral motion, using human cadaveric models, when a 

laminectomy itself has been performed, could not be found. 

The actual data available about the effects of a lumbar laminectomy is 

controversial. Zander et al. (2003) developed a mathematical model that intended to 

evaluate the effects of a laminectomy on lumbar stability, but their procedure included 

the removal of the facet capsular ligament (facetectomy), which should not be compared 

to a laminectomy alone. Likewise, Lee & Teo (2004) developed a three dimensional 

finite element (FE) model of an L2-L3 segment, where the effects of the laminectomy 

and facetectomy were evaluated. In this study, the posterior elements were resected 

following the subsequent order: (1) unilateral laminectomy, (2) unilateral facetectomy, (3) 
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bilateral laminectomy, (4) bilateral facetectomy. Once again, it is not appropriate to 

consider the outcomes of treatment (3) as the effects of a laminectomy itself since the 

segment was previously subjected to a unilateral facetectomy. However, this study 

suggests that unilateral laminectomy may cause some kinematic effects and annulus 

stress. 

Regarding animal models, Kulkarni et al. (2007) investigated the post-

laminectomy effects for lumbar intraforaminal spinal nerve adhesion in a rodent’s in vitro 

model, finding quantifiable spinal nerve fibrosis after laminectomy, but no biomechanical 

data in terms of intervertebral motion was reported. Likewise, an in vitro study conducted 

by Rao et al (2002) was intended to compare the kinematic effects in calf spines of a 

bilateral laminotomy and a laminectomy, but this last procedure implied the excision of 

the medial portion of the facet joint capsule, which makes the laminectomy procedure 

refutable. Additionally, it is recognized in this work the possible overestimation in the 

influence of supraspinous and interspinous ligaments for flexion when extrapolating 

results to human cadaveric models, since the calf spines has longer spinous processes 

than human spines. 

Since the existence of data regarding the biomechanical effects of a laminectomy 

decompression on the lumbar spine is limited, and the data is controversial due to 

different procedures described as a laminectomy, the need of in vitro biomechanical 

testing to investigate the effects of this procedure in human cadaveric lumbar spinal 

segments arose. 

 

1.2. Objectives 

The scope of this study is to evaluate the biomechanical effects, through in vitro 

testing, of a laminectomy decompression on a lumbar functional spinal unit (FSU) as a 
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treatment for spinal stenosis. Also, the effect of fusion (using the “gold standard” system: 

pedicle screw) as an alternative for stabilization after decompression is evaluated. 

 

1.3. Experimental Design 

A load-displacement machine, designed for 6 DOF spine testing by VG 

Innovations, LLC., was used to perform dynamic (±8Nm at 0.125Hz) and quasi-static 

(±7.5Nm at 0.1Hz) loading tests on six lumbar functional spinal units (FSUs) that 

underwent three different treatments: (1) intact/control, (2) laminectomy decompression 

and (3) pedicle screw system (PSS).  

 

1.4. Limitations 

The availability of human cadaveric specimens was limited. Only four lumbar 

spines were available for this study. In addition, the condition of some spinal levels were 

not ideal (i.e. presence of osteophyte discs, osteoporotic conditions), which forced the 

reduction on the number of samples. These limitations led to utilizing six Functional 

Spinal Units (FSUs) from different levels: one L1-L2, one L2-L3, one L3-L4, one L4-L5 

and two L5-S1 segments. Having a restricted number of samples from different spinal 

levels limited the conclusions related to spinal level, as well as the power of the data 

analysis.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Spine Anatomy 

2.1.1. Overview 

The human spine is responsible for the motion between the pelvis, trunk, and 

head. It allows weight transfer in the form of compressive, tensile and bending load, 

originated by daily body motions, and it also serves as protection to the spinal cord. 

(White & Panjabi, 1990) 

The spine consists of 24 articulated vertebrae (7 cervical, 12 thoracic and 5 

lumbar) and 8 to 9 fused vertebrae (5 sacral and 3 or 4 coccygeal segments), as 

illustrated in Figure 2.1. Each cervical, thoracic and lumbar vertebra is articulated with 

their adjacent vertebrae by a cartilaginous joint (intervertebral disc) that serves as shock 

(also heat) absorber, and allows holding the vertebral bodies together. Ligaments and 

muscles are also part of the structure that gives the spine its stability. (White & Panjabi, 

1990) 

One particular functional feature of the spine is its natural curvatures (Figure 2.1). 

In the sagittal plane, the spine has 4 normal curvatures: concave posteriorly (lordosis) on 

the cervical and lumbar region and concave anteriorly (kyphosis) on the thoracic, sacral 

and coccygeal regions. These anatomical curvatures contribute to the vertebral column’s 

stability, its stiffness and flexibility, which are fundamental for absorbing different forces 

to which it is habitually exposed. (White & Panjabi, 1990)  
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Figure 2.1. Lateral View of the Spinal Column–Only Bone Structure and Intervertebral 

Disc are Shown. (Spine Universe, 2010 (Public Domain)) 
 

2.1.2. Functional Spinal Unit 

A functional spinal unit (FSU) is known as the smallest motion segment that can 

demonstrate biomechanical properties of the spine (Figure 2.2). It consists of two 

adjacent vertebrae, the intervertebral disc between the two, and interconnecting 

ligaments. (Nordin & Frankel, 2001) 
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Figure 2.2. Schematic Representation of a Lumbar FSU Spine-Sagittal View. (adaptation 

from Nordin & Frankel, 2001) 
 

2.1.2.1. The Vertebra 

With the exception of the first cervical vertebra, which does not have a body, the 

vertebral body is the bone structure of a FSU. Common characteristics of a typical 

vertebra are the vertebral body (anterior segment), the neutral arch (posterior segment-

which enclose the vertebral foramen) and the seven processes (four articular, two 

transverse and one spinous). (Moore, Agur & Dalley, 2011) 

Each vertebra’s anatomy is unique but they share common features that are 

highly related to their location. The lumbar region, for example, is exposed to greater 

loads which justifies wider and thicker vertebral bodies, when comparing to those on the 

thoracic and cervical regions (Nordin & Franke, 2001). Figures 2.3, 2.4 and 2.5 illustrate 

a typical cervical, thoracic and lumbar vertebra, respectively. 

The sacrum, composed by five fused vertebrae, gives the strength and stability to 

the pelvis. Its most superior vertebra (S1) articulates with the inferior articular process of 

the last lumbar vertebra (L5). (Moore, Agur & Dalley, 2011) 

1. Longitudinal Ligament (posterior). 

2. Longitudinal Ligament (anterior). 

3. Vertebral Body. 

4. Cartilaginous end plate. 

5. Intervertebral disc. 

6. Intervertebral foramen (with nerve root) 

7. Ligamentum flavum. 

8. Spinous process. 

9. Intervertebral Joint (facet joint). 

10. Supraspinous ligament. 

11. Interspinous ligament. 

12. Transverse process (intertransverse 

ligament not shown). 

13. Arch. 

14. Vertebral canal. 
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Figure 2.3. Representation of a Typical Cervical Vertebra. (Gray, 1918 (Public Domain)) 
 

 
Figure 2.4. Representation of a Typical Thoracic Vertebra. (Gray, 1918 (Public Domain)) 
 

 
Figure 2.5. Representation of a Typical Lumbar Vertebra. (Gray, 1918 (Public Domain)) 
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2.1.2.2. The Intervertebral Disc 

The intervertebral disc is a fibrocartilage that articulates two adjacent vertebrae. 

Its main function is to act as a shock absorber of all loading, especially compressive 

loads, to which the trunk is exposed (White & Panjabi, 1990). It is also important for 

maintaining the space between vertebrae, allowing the nerve roots from the spinal cord 

to expand to the rest of the body. 

Regarding its composition, an intervertebral disc consists of an inner gelatinous 

structure, nucleus pulposus, and an outer fibrocartilage structure, annulus fibrosus 

(Figure 2.6). Due to its important role on withstanding complex loads, its degeneration is 

critical for the spine motion. 

 

Figure 2.6. Representation of an Intervertebral Disc Anatomy. (Lahr, 2003, (Public 
Domain)) 

 

There is no intervertebral disc between the two first cervical vertebrae (C1 and 

C2), and the last functional disc is located between the last lumbar vertebrae (L5) and 

the first fused sacral vertebra (S1). The thickness of an intervertebral disc is associated 

with the range of motion to which it is exposed; hence to the region it is located. Lumbar 



www.manaraa.com

9 
 

and cervical intervertebral discs are thicker, while the thinnest discs can be found at the 

superior thoracic region. (Moore, Agur & Dalley, 2011) 

With aging, the nucleus pulposus becomes dry and granular due to the loss of 

elastin and the gain of collagen, which make it stiffer and more resistant to deformation. 

Likewise, the annulus becomes thicker and begins to develop fissures and cavities. 

(Moore, Agur & Dalley, 2011) 

A common condition for low back pain is known as herniated disc, where the 

nucleus pulposus protrudes into or through the annulus causing compression on 

longitudinal ligaments and/or the spinal cord, usually posterior-lateral. Localized pain is 

triggered by the pressure produced by the herniated disc on the longitudinal ligaments 

and from local inflammation, while chronic pain results from compression on the spinal 

cord. This condition usually requires surgical intervention. (Moore, Agur & Dalley, 2011) 

 

2.1.2.3. Ligaments 

Ligaments are uniaxial structures that respond effectively to loads applied along 

the direction of their fibers (White III & Panjabi, 1990). They can extend to one or more 

adjacent vertebra, depending on its nature and location. Among the main features of 

ligaments in a FSU is to bring stability to the vertebral column, as well as protect the 

spinal cord by limiting the range of motion (White III & Panjabi, 1990). The ligaments 

considered on a FSU are illustrated in Figure 2.7. 
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Figure 2.7. Representation of Ligaments in a Segment of the Spine. (Spine Universe, 

2011 (Public Domain)) 
 

 Each ligament in a FSU has distinct features and is responsible for reacting at 

the presence of specific loads. They are known as (Moore, Agur & Dalley, 2011): 

 Ligamentum flavum. It extends vertically from lamina to lamina, helping the 

vertebral column maintain its natural curvature, as well as assisting on 

straightening after flexing. It also prevents excessive separation between the 

laminae to protect the intervertebral disc from injury. 

 Posterior longitudinal ligament. It extends from the second cervical vertebra 

(C2) to the sacrum. Its main function is to prevent hyper-flexion of the vertebral 

column, as well as posterior herniation of the intervertebral disc. 
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 Anterior longitudinal ligament. It extends from the sacrum to the occipital 

bone anterior to the foramen magnum. It limits the extension of the vertebral 

column and also gives stability to the intervertebral joints. 

 Joint capsule. It surrounds the articular surface of the zygapophysial joints 

(facets). It is responsible for gliding movements between the articular processes.  

 Intertransverse ligament. It connects the transverse processes of adjacent 

vertebrae. It is very thin and membranous on the lumbar region, fibrous on the 

thoracic region and composed by scattered fibers in the cervical region. 

 Interspinous ligament. It connects the spinous processes of adjacent 

vertebrae. It has an important role during flexion (Yogananda, Kumerasan, & 

Pintar, 2001). 

 Supraspinous ligament. It merges from the median ligament of the neck 

(nuchal ligament) and it connects the apices of spinous processes of adjacent 

vertebrae. It is considered a strong structure, compared to the Interspinous 

ligament. 

 

2.2. Spinal Stenosis  

Spinal stenosis is characterized by a narrow (stenotic) vertebral foramen at one 

or more vertebrae. It may cause the compression of one or more spinal nerve root 

located at the vertebral canal, or the compression of any nerve leaving the neural 

foramina. Even severe anatomical spinal stenosis could be asymptomatic (Weinstein et 

al., 2007).  

Lumbar stenosis is the most common reason for lumbar surgery in adults over 

the age of 65 (Weinstein et al., 2007). It can be either primary (congenital or postnatal 

developed) or secondary (resulting from degenerative changes, trauma, infection or 



www.manaraa.com

12 
 

surgery) (Genevay & Atlas, 2010). Foraminal stenosis, narrowing of the neural foramen 

at one or more segments, can be either caused by a disc split or osteophytes formation 

(Genevay & Atlas, 2010). 

Treatments for lumbar stenosis can be either surgical or non-surgical. Recent 

studies suggest that surgery is more effective (Genevay & Atlas, 2010). A common 

surgical treatment for lumbar spine stenosis is a decompressive laminectomy (Mimran & 

Henn, 2005; Dimar et al., 2005; Kaner et al., 2010). This procedure consists of the 

resection of the entire laminae of the vertebra, as well as the spinous process, 

ligamentum flavum, and the supraspinous and interspinous ligaments (Mimran & Henn, 

2005), as illustrated in Figure 2.8. More than one vertebra can be involved in this 

treatment and it is also prescribed for recurrent disc displacements, retained 

intervertebral disc fragment, adjacent level stenosis and postoperative instability with 

adjacent level stenosis (Hulen, 2008). 

This procedure is considered a minimal invasive surgery and can be performed 

in a regular operating room. After all preoperative preparation, the first step is to 

determine the level that will be treated, and fluoroscopy is commonly used for this 

approach. The second step consists on creating a channel through which the procedure 

will be performed. There is a wide variety of instruments used for this purpose and they 

are generally offered as a “surgical kit” (i.e. tubular retractor system by METRx). The 

third step implies the removal of the laminae, using a high-speed air drill and an 

operative microscope and/or endoscopy to guarantee excellent illumination and visibility. 

(Mimran & Henn, 2005) 

Occasionally a lumbar decompression is followed by fusion. According to a 

recent study by Reid et al. (2011), posteriolateral fusion (PLF) is more widely accepted 

than direct posterior spinal fusion nowadays (PSF). Pedicle screw systems (PSS) is the 
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standard method for PLF (Figure 2.9), which consists on fixing screws to the pedicles of 

two adjacent vertebrae and bound them by rods, crosslinks and connectors (Reid, 

Johnson & Wang, 2011). 

 

 

Figure 2.8. Illustration of a Two-Levels Lumbar Laminectomy. (Orthogate, 2006, (Public 
Domain)) 

 

   
(A)            (B) 

Figure 2.9. Alphatech Pedicle Screw System. (A): L5-S1 Segment, (B): L1-L2 Segment 
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Some researchers affirm that spinal fusion negatively affects adjacent spinal 

levels by promoting degeneration due to the restricted motion in the fused segment(s) 

(Bono & Brick, 2007; Goel, et al. 2007). However, a common argument made for fusing 

spinal segments after decompression is that fusion helps to minimize the chance of 

instability that could eventually lead to slippage of the disc and stenosis (Mardjetko, 

Connolly, & Shott, 1994; Bono & Brick, 2007). 

 

2.3. Biomechanics of the Spine 

When discussing about spine biomechanics, it is important to define a coordinate 

system to which all possible motions would be referred. Figure 2.10 defines a three-

dimensional, right-handed, orthogonal coordinate system (according to ISO 2631) where 

all motions (flexion, extension, right/left bending and right/left rotation) are illustrated. 

Here X-axis refers to ventral (forward), Y-axis to the left and Z-axis refers to cranial 

(above). 

 

Figure 2.10. Three-Dimensional Coordinate System to Reference FSU Motions. (Wilke, 
Wenger, Claes, 1998) 
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The spine could be considered as a structure composed by multiple FSUs, hence 

its behavior can be seen as a composite of each FSU’s actions. The biomechanical 

properties of a FSU mainly depend on the physical properties of its components 

(intervertebral disc, ligaments and articular joints). A typical load-displacement curve 

experience by any FSU is shown in Figure 2.11. 

Figure 2.11. Representation of a Load-Displacement Curve with Continuous Changing 
Load. (Wilke, Wenger, Claes, 1998) 

 

A typical load-displacement curve for a FSU reveals the viscoelastic (non-linear) 

behavior of the vertebral column. At small loads, the displacement increases more 

rapidly (i.e. region neighboring the neutral zone) than it does for larger loads (i.e. elastic 
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zone). The following definitions can be conceptualized from Figure 2.11 (Wilke, Wenger, 

Claes, 1998): 

 Neutral Zone (NZ). It is defined as the difference in displacement (angulation) 

at “zero” load between two phases of motion. It represents the range over which 

the specimen moves essentially free. 

 Elastic Zone (EZ). Deformation measured from the end of the neutral zone 

(NZ) to the point of maximal physiological load. 

 Range of Motion (ROM). It describes the sum of the neutral zone and the 

elastic zone in one direction of motion. 

 Neutral Zone Stiffness (NZS). The stiffness measured at the neutral zone by 

taking the slope of the linear portion around the neutral position1. 

 Elastic Zone Stiffness (EZS). The stiffness measured at the linear portion 

around the elastic deformation zone1. 

In vitro biomechanical testing normally includes the evaluation of some or all of 

the parameters mentioned above. They could give useful information when evaluating 

changes in spine biomechanics due to an injury or degeneration. 

Both dynamic and quasi-static loading conditions provide substantial information 

about the biomechanics of the spine. When testing dynamically, there is a closer 

approximation to what the behavior of the spine would be during Activities of Daily Living 

(ADL). Most daily tasks performed by a person imply dynamic motion of the vertebral 

column. However, quasi-static testing allows the analysis of the creep phenomenon 

                                                           
1
Technically, the stiffness is the inverse of the slope of the linear portion of the curves, from Figure 2.11. 

 



www.manaraa.com

17 
 

demonstrated by the spine (due to its viscoelastic properties), which shows how when a 

load is being held constant, the strain increases over time. 

 

2.3.1. The Vertebra 

Cervical, thoracic and lumbar vertebrae share common features that have been 

previously discussed, but the increment in size and mass from the first cervical to the 

last lumbar have a reason for being: the compressive load increases as we move to 

lower levels. Likewise, the alignment of the facet joints governs the mechanical behavior 

of a vertebra, and their orientation can significantly differ between the three regions of 

the spine. Furthermore, the facet joints orientation has been identified as an important 

sign for different pathologies of the intervertebral disc. (White & Pajabi, 1990) 

Another parameter for describing a vertebra’s biomechanics is the stress of 

failure (strength), which is directly related to bone density. In general, aging has shown 

to induce osseous tissue's diminution, thus, the vertebra decreases in strength. 

 

2.3.2. Intervertebral Disc 

The disc is mainly exposed to compressive loads, although it can be subjected to 

other types of stress during physiological motion (depending on its location). The disc 

exhibits time-dependent properties (i.e. viscoelasticity); hence it is important to 

categorize the loads in order to describe the biomechanical properties of the disc. These 

loads are mainly distinguished by their amplitude and duration, being the two categories: 

(1) low amplitude/long duration and (2) high amplitude/short duration. (White & Panjabi, 

1990) 

Being both elasticity and viscosity characteristics of an intervertebral disc, the 

creep and stress relaxation phenomenon (illustrated in Figure 2.12) can be exhibited, 
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depending on the type of load applied. Creep occurs when a constant stress (load) is 

displayed and, as a result, the strain increases over time. While stress relaxation 

phenomenon takes place when a constant strain is applied and the result is a decrement 

of the stress over time. 

The viscoelastic properties of a disc can be altered by degeneration, therefore 

the ability of responding to certain loads and attenuating shocks. It has been observed 

that the creep response of an intervertebral disc is highly related to the degree of its 

degeneration, where a non-degenerated disc creeps gradually reaches its final 

deformation after a long period of time when comparing with a degenerated disc (cited 

on White & Panjabi, 1990). 

Another important phenomenon that is present in the intervertebral disc behavior 

is hysteresis, which is defined by the loss of energy when exposed to cyclic loads. It has 

been shown that lower lumbar discs experience larger hysteresis than other regions. 

The hysteresis exhibited by an intervertebral disc decreases when it is loaded a second 

time, which suggests that the vertebral column is less protected against cyclic loading. 

(White & Panjabi, 1990) 

 

Figure 2.12. Creep and Stress Relaxation Phenomenon. 
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2.3.3. Ligaments 

Due to the complex anatomy of ligaments, they can develop tension as a 

response of tensile resistance from external loads of different natures; although they are 

most effective when subjected to uniaxial loads (White & Pajabi, 1990). Compared to the 

intervertebral disc, the ligaments are more subjected to tension loads while a disc is 

designated more for compressive loads. 

The resistance a ligament exerts against a load depends on the magnitude and 

rate at which the load is applied. Anterior longitudinal ligament, as well as the 

interspinous ligament, exerts higher resistance than the posterior longitudinal ligament 

located at the center of rotation. (Yogananda, Kumerasan, & Pintar, 2001) 

In terms of biomechanics, a ligament that offers a smaller lever arm would 

provide less stability than one with a larger lever arm. In other words, the resistance of a 

ligament in a vertebra is proportional to the force being applied and to the lever arm (i.e. 

resistance=Force X Lever.arm –cross product), as long as the force (tension) is applied 

on the instantaneous axis of rotation, as illustrated in Figure 2.13. The resistance 

exerted by two different oriented ligaments (FA X LA, resistance of ligament A, and FB X 

LB resistance of ligament B), which have the same mechanical properties, would be 

greater for the one that has a greater lever arm (assuming the ligaments apply equal 

force). (White & Panjabi, 1990)  

A typical load-displacement curve of a ligament is illustrated in Figure 2.14. Two 

major areas are identified: physiological and traumatic range. The physiological range is 

constituted by the neutral and elastic zone (NZ and EZ), which have been defined before 

(please refer to biomechanics of the spine). It is important to mention that, according to 

Figure 2.14., the neutral zone (NZ) is the displacement achieved when a small load (very 
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close to zero) is applied, while other authors refer to the NZ as the displacement 

achieved when a zero load is applied. 

Figure 2.13. Stabilizing Function of a Spinal Ligament. (Adaptation from White & 
Panjabi, 1990) 

 

The ligaments do not provide crucial stability when the vertebral column is close 

or within the neutral zone but they do for higher strains, i.e. away from NZ (Panjabi, 

1992). Goel et al. (as cited on Tai et al., 2008) suggest that the supraspinous ligament 

plays an important role during flexion. Likewise, the intertransverse ligaments have 

mechanical significance in the thoracic region while they have been found less important 

for the lumbar region due to small cross-sectional size (White & Panjabi, 1990). 

 Figure 2.14. Typical Load-Displacement Curve of a Ligament. (Adaptation from White & 
Panjabi, 1990)  

T: tension 

F: Force 

L: length 

A, B: Ligaments 

P: Point of attachment for ligaments 

IAR: Instantaneous axis of Rotation 

Neutral          Elastic             Plastic 
  Zone           Zone                Zone 
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The ligamentum flavum allows large amounts of flexion without achieving a 

permanent deformation due to its high percentage of elastic fibers, while the capsular 

ligaments (facet joints) play an important role during flexion for the cervical region. 

(White & Panjabi, 1990) 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1. Specimen Selection and Preservation 

Four frozen human lumbar spines, with no previous surgery and suitable for 

research, were obtained from multiple approved research donor tissue organizations. 

The donors group consisted of 2 females and 2 males, with an average age of 63 ± 12 

years.  

In order to identify any major abnormality, such as intervertebral disc osteophytes 

and fissures to the vertebral bodies, the spines were visually inspected and dual-energy 

x-ray absorptiometry scans were performed to asses bone mineral density (BMD), 

Specimens with a BMD score lower than 0.700gr/cm2 were considered at high-risk of 

osteoporosis, hence were excluded and replaced. The average score of BMD was  

0.941 ± 0.169 gr/cm2. 

The inspection of the specimens served to identify the best Functional Spinal 

Units (FSU) that would be disarticulated and used for the study. Specimens were thawed 

at room temperature (23±1°C) for about 24 hours and then disarticulated. Muscles and 

adipose tissue were removed, carefully preserving the disc, ligaments and posterior 

elements of the respective selected segment. Each FSU was inspected and only a 

selected subset was judged acceptable for inclusion in this study. The group of FSUs 

consisted of L1-L2, L3-L4 and L5-S1 segments from specimen 1, L4-L5 from specimen 

2, L5-S1 from specimen 3, and L2-L3 segment from specimen 4. 
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Specimens were sprayed with distilled water, covered with soaked gauzes and 

preserved in a freezer at -30°C. They were thawed at 4°C for 8-12 hours and set at room 

temperature (23±1°C) for 30 min before testing. 

 

3.2. Specimen Preparation 

The specimen preparation protocol was developed by VG Innovations, LLC and 

used with only minor modifications in this study. This reflected and extensive analysis of 

protocols employed in similar studies. 

To anchor the FSU, three 2’’ screws (size 10) were placed in the vertebral body 

and two 1’’ screws (size 8) in each articular facet joint of the superior vertebra, using a 

screwdriver. In some cases, it was necessary to drill a small hole before placing the 

screws to facilitate fixation. It was essential to achieve a good fixation at the first attempt, 

so we avoided having loose screws as a consequence of screwing in and out. 

Additionally, it was taken into account that the screws placed in the vertebral body would 

not go deeper than the height of the vertebral body, since it would have damaged the 

intervertebral disc. Once the screws were in place, we verified all screws were securely 

fastened (Figure 3.1). Likewise, screws were placed in the inferior vertebra (3 in the 

vertebral body and 2 in the inferior facet joints). 

Two molds were constructed with two aluminum plates (6’’ x 6’’ x 0.25’’) and 

dishes (OD-6.3’’, ID-6’’, height-2’’), where each plate was screwed to each dish using 

four 10’’ threaded bar (Figure 3.2a). Four ¼-20x2’’ pan head screws were placed 

horizontally into the holes of the dishes and wing nuts were placed at 1 inch on each 

screw, to help securing the specimen to the testing machine. At this point, the FSU was 

placed in the inferior mold, making sure the spinous process was aligned with one of the 

threaded bars. The orientation was given by the centers of rotation so that they would 
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coincide with the drive shafts of the testing machine (Figure 3.2b). Also, the disc was 

lined up parallel to the base of the frame. These alignments were necessary to ensure 

all loads would be applied at the right planes. In some cases, it was necessary to elevate 

the spinal segment by using bolt nuts at the bottom of the screws located on the 

vertebral body. After filling the inferior mold with a polyester resin mixture, we let it set for 

30min. Then, the 4 threaded bars were removed (Figure 3.3a) and the assembly (dish 

and spine anchored to the polyester resin) was flipped upside down through another 4 

threaded bars which were attached to the superior mold. Four bolt nuts placed on the 

threaded bar gave the correct position (height) to the FSU (Figure 3.3b). The dish was 

filled with the polyester resin mixture and the specimen was removed from the dishes 

after 30 minutes (Figure 3.4).  

 

 

 

Figure 3.1. Representation of Screws’ Position in One Side of a FSU. (A): Superior view. 
(B): Anterior-superior view. 

 

 

 

 

          (A)              (B) 
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Figure 3.2. Settings for Specimen’s Fixation. (A): Mold Configuration. (B): Specimen’s 
Position for Achieving Correct Fixation. 

 

Figure 3.3. Specimen’s Fixation Process. (A): First Step Finished (Inferior Vertebra 
Anchored to Polyester resin Mixture). (B): Second Step’s Configuration 
(Superior Vertebra Fixation). 

 

Figure 3.4. Representation of a Segment Fixed to Polyester Resin Bases. (A): Anterior 
View. (B): Posterior View. 

 

        (A)            (B) 

                  (A)                    (B) 

       (A)                    (B) 
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3.3. Testing Machine and Set-Up 

3.3.1. Testing Machine Description 

A load-displacement machine designed for 6DOF spine testing by VG 

Innovations, LLC was used for testing the specimens under flexion/extension, lateral 

bending and axial rotation (Figure 3.5). This machine consists of three Brushless AC 

servo motor (model N0400-101-B-000), combined with a planetary reduction gear box, 

and two fixation frames (superior and inferior). Two motors are anchored to the upper 

frame, one provides rotation about z-axis and the other rotation about y-axis (please 

refer to Figure 2.10). The third motor is attached to the lower frame and it also provides 

rotation about the y-axis. To achieve rotation about the x-axis (i.e. flexion/extension), it is 

necessary to rotate the specimen 90 degrees; for this reason, flexion/extension and 

lateral bending tests had to be performed one at the time, while axial rotation can be 

performed no matter how the specimen is placed on the machine. Both dynamic and 

quasi-static tests can be performed, by choosing either moment or displacements rates 

that are controlled by Electronic Spine Tester VGI, software developed for the spine 

tester (Figure 3.6). 

The moments applied to the specimen are measured through strain gauges 

(precision of 0.01Nm) located directly on the drive shafts coupled to the dishes that 

holds the specimen (Figure 3.7), using the following relation: 

  ( [ ]    [ ])       (Equation 3.1) 

where V[v] is the voltage reading from the strain gauges at a specific tension, OF[v] is 

the voltage reading from the strain gauges when no torque is being applied and SF is 

the scaling factor determined by the calibration of the strain gauges. 
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Figure 3.5. Testing Machine with Preload. 
 

Figure 3.6. Representative Output (User Interface) from a Regular Quasi-Static Loading 
Test. 

 

Axial Motor 

Upper Motor 

Lower Motor 

Preload 

(One side) 
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Figure 3.7. Strain Gauges. (A): Upper Motor Strain Gauge-superior. (B): Axial Motor 

Strain Gauge-1 of 2. 
 

The displacements values come directly from the motor (precision of 0.01 

degree) as a measurement of the degrees rotated by the shaft when applying a certain 

moment. Figures 3.8 and 3.9 show a representation of a typical plot of the outcome for a 

dynamic and quasi-static test, respectively. For any testing the variables measured 

were: time, torque and displacement.  

For dynamic testing, the change in displacement triggered by a continuous 

(dynamically) change in torque (Figure 3.8) was plotted. However, quasi-static data was 

used to create two different plots: torque vs. time (not shown) and displacement vs. time 

(Figure 3.9). The first plot was used to ensure the desired moments were being achieved 

for each step, while the second plot was our actual graph of interest.  Occasionally, data 

from last step of quasi-static tests were estimated from a “print-screen” shoot (Figure 

3.6), due to a minor software issue. Thus, the data when this issue was encountered 

looked like last step for PSS shown in Figure 3.9. 

 (A)                     (B) 
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Figure 3.8. Representative Flexion-Extension Results for Intact, Laminectomy and PSS 

Treatments, under Dynamic Load. 
 
 

Figure 3.9. Representative Right Bending Results for Intact, Laminectomy and PSS 
Treatments, under Quasi-Static Loads. 
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3.3.2. Testing Set-Up 

The FSU was anchored to the testing machine by using 4 screws threaded to 

both superior and inferior polyester resin bases. The first test performed was 

flexion/extension (dynamic followed by quasi-static testing), and then the specimen was 

rotated 90 degrees clockwise for testing lateral bending and axial rotation (both dynamic 

and quasi-static testing as well). It was important to be consistent with the position of the 

specimen to be able to analyze adequately the output data. All screws holding the 

specimen on the machine were well tight to avoid any unwanted vibration. Figure 3.10 

shows the configuration of the specimen on the testing machine for performing lateral 

bending and axial rotation tests. 

 

Figure 3.10. Specimen Configuration on Testing Machine for Lateral Bending and Axial 
Rotation Tests. 
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A compressive pre-load of 398.3 N was applied to the FSU during all tests, 

considering that previous publications suggest 400N (Voronov et al., 2009; Phillips et al. 

2009). 

In order to define the pre-load, we needed to consider the following calculation: 

 ⃗     ⃗⃗⃗⃗     
 ⃗

 ⃗⃗
 

   [ ]

    [    ]
       [  ]            (Equation 3.2) 

The superior frame of the machine weighted 16.3 kg, which made us needed to 

add 24.5 kg to reach the required preload (400N). 5.7 kg of weight were added to each 

corner of the superior frame, and one 1.1 kg weight to the opposite side of the upper 

motor location (using a 0.45 kg clamp). The total weight added was 24.3 kg. The 

corners' weights were hold with hexagon head bolts, wing nuts and washers (please 

refer to Figure 3.5 and 3.10). This configuration led to 40.6 Kg, which resulted in a 

preload of 398.3 N. 

 

3.4. Testing Protocol 

All tests were performed at room temperature (23±1°C) Each FSU was subjected 

to both dynamic and quasi-static loads for all treatments. Dynamic tests were performed 

using a moment of ±8Nm at a rate of 0.125Hz, for 5 cycles. The only case where 8 

cycles were performed when testing dynamically was for intact condition under flexion-

extension (very first test for each specimen), allowing the specimen to pre-condition. All 

cycles were recorded and the last cycle was used for the analysis. 

Quasi-static tests were performed using a moment of ±7.5Nm at a frequency of 

0.1 Hz, for 5 steps. Each step represented an increment of 1.5Nm of moment, where the 

displacements achieved were estimated by taking 80±30 data points at the linear portion 
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of each step. Figure 3.11 outlines the overall process to which each specimen was 

submitted. 

Figure 3.11. Schematization of the Overall Process for Testing a Specimen. 
 

Laminectomy decompression was achieved in all FSU by resecting the entire 

laminae of the vertebra, the spinous process, ligamentum flavum, and the supraspinous 

and interspinous ligaments, preserving intact the facet joints (Figure 3.12b).  

Alphatech PSS was only attained in three specimens (Figure 3.12c) since other 

specimens were not suitable for this procedure due to a bad bone condition. 

Table 3.1 summarizes the different procedures’ time that implied the specimen 

being exposed to room temperature (23±1°C). From this table we can estimate that the 

Specimen 

Thawing / 
Disarticulation 

Potting* 

Dynamic Flexion-
Extension 

(±8Nm/0.125Hz 
/8 Cycles) 

Quasi-static 
Extension 

(8Nm/0.1 Hz /5 
Cycles) 

 

Quasi-static 
Flexion 

(8Nm/0.1Hz/5 
Cycles) 

Rotation of 
Specimen (90 

degrees 
clockwise) 

Dynamic Lateral 
Bending 

(±7.5Nm/0.125Hz
/5 Cycles) 

Quasi-static Right 
Bending 

(7.5Nm/0.1Hz/5 
Cycles 

Quasi-static Left 
Bending 

(-7.5Nm/0.1Hz/5 
Cycles  

Dynamic Axial 
Rotation 

(±8Nm/0.125Hz/5 
Cycles) 

Quasi-static Right 
Rotation 

(7.5Nm/0.1Hz/5 
Cycles) 

Quasi-static Left 
Rotation 

(-7.5Nm/0.1Hz/5 
Cycles) 

Laminectomy 
Decompression 

performed 

All Tests were 
repeated in the 
same order** 

PSS performed 
on selected 
specimens 

All Tests were 
repeated for 
specimens 
treated with 

PSS** 

*Occasionally, the specimen was preserved at 4°C for 8-12 hours after potting and testing 
**Dynamic flexion-extension was performed for 5 cycles instead of 8 
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total testing time for a specimen that underwent intact, laminectomy decompression and 

PSS treatments was, in average, less than 7hrs, and less than 3hrs for a specimen that 

was not treated with PSS. 

 

   
(A)    (B)    (C) 

 
Figure 3.12. Posterior Elements of a FSU. (A): Intact. (B): Laminectomy Decompression. 

(C): PSS. 
 

Table 3.1. Average Time for Different Procedures. 
 

 Procedure Average time [min] 

Thawing* 1400 ± 120 

Disarticulation/potting* 300 ± 60 

Laminectomy Decompression* 30 ± 10 

PSS Procedure* 169 ± 23 

Set of Biomechanical Tests-One Treatment* 45 ± 13 

*The Error Represents the Standard Deviation (SD) for n=6 
**The Error Represents the Standard Deviation (SD) for n=3 

 

 

3.5. Data Collection & Analysis 

3.5.1. Dynamic Analysis 

According to the Neutral Zone (NZ) definition, the displacement when there is no 

torque being applied (0 Nm) should be the same for both flexion and extension, as well 
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as for right/left bending and right/left axial rotation (please refer to Figure 2.11). 

Therefore, the defined NZ for each specimen was calculated from the dynamic tests for 

each treatment, and all dynamic data was adjusted so the displacement at zero torque 

would be half of the NZ (NZ/2). Figure 3.13 shows a typical flexion-extension result 

without the adjustment of the NZ and Figure 3.14 represents the plot for the adjusted 

data. 

 

Figure 3.13. Representative Flexion-Extension Results for Intact, Laminectomy and PSS 
Treatments (without NZ Adjustment). 

 

The dynamic Neutral Zone Stiffness (NZS) was calculated to evaluate the impact 

of a laminectomy procedure and PSS treatment on the flexibility of a FSU. The NZS was 

estimated as the inverse of the slope of the linear portion of the load-displacement 

curves, around the neutral position (Phillips et al., 2009).  
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Figure 3.14. Representative Flexion-Extension Results for Intact, Laminectomy and PSS 
Treatments (with NZ Adjustment) 

  

Since the range of motion for different levels of the spine could differ from each 

other, the data was also normalized with respect to the initial condition (intact-control). 

Therefore, the changes in stiffness triggered by laminectomy and PSS treatments were 

evaluated. 

 

3.5.2. Quasi-Static Analysis 

 Analogously to the dynamic analysis, all quasi-static data was presented in terms 

of ROM as well as normalized with respect to intact condition. In this sense, the 

parameters presented for quasi-static testing were absolute range of motion and the 

change in ROM triggered by the laminectomy and PSS treatments. The changes in 
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ROM were estimated with the ratios from laminectomy displacement versus intact 

displacement and PSS displacement versus intact displacement, at certain loads. 

 

3.6. Instrument Calibration & Method Validation 

3.6.1. Calibration 

As it has been mentioned, the displacements were obtained from strain gauges 

readings. These strain gauges were calibrated using a lever arm fixed directly to the 

shaft where the gauges were located (Figure 3.15). The arm consisted on a 24cm “L” 

shape steel bar (0.45 Kg of weight) that contained 10 equidistant holes (23mm). A 4.54 

kg weight and the physic principle of moment of a force were used to measure the 

torque (as strain gauges voltage) produced by the weight at each hole, using the 

following relationship: 

 ⃗⃗⃗[  ]    ⃗⃗⃗[ ]    ⃗⃗⃗⃗ [ ]     ⃗⃗⃗  (  ⃗)   (Equation 3.3) 

where r[m] is the distance from where the torque is being measured to where the weight 

is being placed and F[N] is the force exerted by the weight.  

 

 

Figure 3.15. Calibration of Strain Gauges. (A): Upper Motor Lever Arm and Weight 
Configuration. (B): Axial Motor Position for Performing Calibration. 

 

 (A)           (B) 
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Since the strain gauges reading unit is voltage, a relationship voltage-moment 

was defined. By this, it was possible to identify the specific voltage reading for known 

moments, and compute the SF and OF variables (from Equation 3.1), for each motor. 

 

3.6.2. Method Validation 

A PVC pipe (ID-3/4’’ and 8’’ of length) was fixed to polyester resin bases 

(replicating specimen’s setting) and tested reproducing specimen’s protocol. This PVC 

sample was tested under dynamic and quasi-static loads (both bending and axial) after 

the strain gauges’ calibration, as well as at the beginning of a testing day. This allowed 

us to validate the accuracy of the measurements and to detect any error on the data 

recorded. Table 3.2 summarizes the average displacements at specific torques when a 

quasi-static test was performed using the PVC pipe sample. Moreover, the precision of 

the torque reading (from output files) was analyzed (Table 3.3). 

 
Table 3.2. Average Displacement of PVC Pipe for Specific Moments. 
 

Moment 
[Nm] 

Right Bending 
[degrees] 

Left Bending 
[degrees] 

Right Rotation 
[degrees] 

Left Rotation 
[degrees] 

1.50 0.37 ± 0.02 0.36 ± 0.02 0.28 ± 0.01 0.27 ± 0.01 

3.00 0.79 ± 0.02 0.75 ± 0.02 0.72 ± 0.01 0.71 ± 0.01 

4.50 1.20 ±0.02 1.17 ± 0.02 1.22 ± 0.01 1.19 ± 0.01 

6.00 1.61 ± 0.02 1.57 ±0.02 1.69 ± 0.01 1.68 ± 0.01 

7.50 2.02 ± 0.02 2.00 ± 0.02 2.15 ± 0.01 2.16 ± 0.01 

Note: Errors represent standard deviation (repeated measurements, n=5) 

Table 3.3. Average Moment for PVC Pipe Testing for Torques of Interest. 
 

Moment 
[Nm] 

Right Bending 
[Nm] 

Left Bending 
[Nm] 

Right Rotation 
[Nm] 

Left Rotation 
[Nm] 

1.50 1.47 ± 0.02 1.49 ± 0.01 1.49 ± 0.01 1.50 ± 0.01 

3.00 2.97 ± 0.01 2.98 ± 0.02 2.99 ± 0.01 2.99 ± 0.32 

4.50 4.48 ± 0.02 4.47 ± 0.01 4.49 ± 0.01 4.48 ± 0.54 

6.00 5.97 ± 0.01 5.98 ± 0.01 5.99 ± 0.01 5.98 ± 0.76 

7.50 7.50 ± 0.01 7.49 ± 0.01 7.49 ± 0.01 7.49 ± 0.97 

Note: Errors represent standard deviation (repeated measurement n=5) 
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Likewise, a square steel bar (2’’x2’’x6’’) was covered with polyester resin for 

creating a stiffer model as an additional validation protocol. The idea of using a stiffer 

sample was to verify that torques applied when small displacements were achieved were 

accurate. This also allowed us to verify both horizontal motors, used for testing bending 

and flexion/extension, were achieving the same torque for the same (small) 

displacements. The results are summarized in Table 3.4 (torque variation) and Figure 

3.16 (displacement variation). 

 

Table 3.4. Average Moment for Steel Column for Torques of Interest. 
 

Moment 
[Nm] 

Right 
Bending 

[Nm] 

Left Bending 
[Nm] 

Right Rotation 
[Nm] 

Left Rotation 
[Nm] 

1.50 1.46 ± 0.02 1.51 ± 0.02 1.55 ± 0.09 1.48 ± 0.07 

3.00 3.00 ± 0.02 3.00 ± 0.03 2.98 ± 0.03 2.00 ± 0.06 

4.50 4.50 ± 0.02 4.49 ± 0.03 4.59 ± 0.03 4.67 ± 0.05 

6.00 6.00 ± 0.03 6.01 ± 0.02 5.93 ± 0.04 5.98 ± 0.07 

7.50 7.50 ± 0.00 7.50 ± 0.01 7.45 ± 0.04 7.44 ± 0.05 

Note: Errors represent standard deviation (repeated measurement n=5)  

 

The results when testing the rigid column were reproducible. Moreover, the 

displacements, in average, were very similar for both right and left bending, as well as 

for right and left axial rotation. Similar results were observed when testing the PVC pipe. 
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Figure 3.16. Average Displacements when Testing Steel Column. (A): Right Bending. 
(B): Left Bending. (C): Right Rotation. (D): Left Rotation. 

 

3.7. Statistical Analysis 

A one-way analysis of variance (ANOVA), followed by a Post-Hoc Tukey and 

Waller-Duncan tests, was conducted (SAS 9.2) to evaluate the differences in range of 

motion among all treatments, using a significance level of 0.05. Likewise, one- (H0: μ≥1 

or H0: μ≤1) and two-tailed (H0: μ=1) t-tests were performed to evaluate the change in 

ROM (ratios with respect to intact condition), using a significance level of 0.05. All 

experimental data is presented as a mean ± standard deviation. 

 

Note: All error bars represent standard deviations (repeated measurements, n=5) 
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CHAPTER 4: RESULTS 

 

4.1. Dynamic Testing Results 

The dynamic neutral zone (NZ) was calculated for all treatments, from the 

dynamic testing, and the values are presented in Figure 4.1. 

 

Figure 4.1. Average of Neutral Zone Values for all Treatments. 
 

All the results from the dynamic testing presented on this chapter were previously 

corrected so the displacements at zero torque were distributed as half of the NZ (please 

refer to explanation on sub-section 3.5.2 Data Collection). It is important to mention that 

each specimen data was corrected with their unique NZ value (by specimen, by motion, 

by treatment). 
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A one-way ANOVA analysis, followed by Post-Hoc Tukey and Waller-Duncan 

tests, was conducted to evaluate any statistically significant difference between the 

neutral zone values for all treatments. P-values for these tests are listed in Table 4.1. 

 

Table 4.1. Output Summary from One-Way ANOVA Test (α=0.05) when Comparing 
Dynamic Neutral Zones (Degrees) for All Motions and Treatments. 

 

 α=0.05 

 ANOVA (p-value) Tukey Duncan-Waller 

Flexion-Extension 0.0031 C ≠ A, C ≠ B C ≠ A, C ≠ B 

Lateral Bending 0.3808 ND ND 

Axial Rotation 0.9696 ND ND 

A= Intact, B = Laminectomy Decompression, C = PSS 
ND = No differences 

 

 Dynamic NZ data was normalized (Figure 4.2) and a two-tailed t-test (H0: μ=1, 

α=0.05) was conducted to evaluate the significance of change in NZ after performing a 

laminectomy decompression. Likewise, the change in NZ after PSS treatment was 

evaluated. The results from these t-tests are presented in Table 4.2. 

 

Figure 4.2. Average Change of Dynamic Neutral Zone after Laminectomy and PSS 
Treatments. 
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Table 4.2. P-Values from Two-Tailed T-Test (H0: μ=1, α=0.05) when Evaluating Change 
of Dynamic NZ (Degrees) with Respect to Intact. 

 

 

Laminectomy  

(n=6) 

PSS 

(n=3) 

Flexion-Extension 0.021 0.004 

Lateral Bending 0.339 0.156 

Axial Rotation 0.777 0.844 

 

The dynamic neutral zone stiffness (NZS) for flexion and extension motions were 

estimated as the inverse of the slope of the linear portion of the load-displacement 

curve, as illustrated in Figure 4.3. 

 

Figure 4.3. Representative Dynamic Flexion-Extension Load-Displacement Curve for 
Intact Treatment, and the Respective Neutral Zone Stiffness (Inverse of 
Slope of Linear Portion). 

 

The change of dynamic NZS for flexion and extension after performing a 

laminectomy and PSS on a FSU were estimated and are summarized in Figure 4.4. 
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Table 4.3 presents the p-values obtained when a two-tailed t-test (H0: μ=1, α=0.05) was 

conducted to evaluate the change of dynamic NZS triggered by these two treatments.  

 

Figure 4.4. Average Change of Neutral Zone Stiffness for Flexion-Extension under 
Dynamic Load. 

 

Table 4.3. P-Values from Two-Tailed T-Test (H0: μ=1, α=0.05) when Comparing Change 
of Dynamic Neutral Zone Stiffness for Flexion-Extension Motions. 

 

 
Extension Flexion 

Laminectomy (n=6) 0.0259 0.1181 

PSS (n=3) 0.0497 0.0353 

 

The range of motion (ROM) achieved by all segments (at 8Nm of moment) for 

each treatment are summarized in Table 4.4, and the statistical output from performing a 

one-way ANOVA analysis, followed by post-hoc Tukey and Ducan-Waller tests, on this 

data are presented in Table 4.5. The percentage changes of ROM after a laminectomy 

and PSS treatments were also calculated and results are shown in Table 4.6; Statistical 

test outputs are summarized in Table 4.7. 
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Table 4.4. Range of Motion Values for Intact, Laminectomy and PSS Treatment, at 8Nm. 
 

 
Intact  

[degree] 
Laminectomy 

[degree] 
PSS 

[degree] 

Extension 2.75 ± 0.74 3.39 ± 1.08 1.72 ± 0.73 

Flexion* 5.29 ± 1.69 5.98 ± 2.26 1.51 ± 0.31 

Right Bending 4.30 ± 1.93 4.59 ± 2.00 2.62 ± 1.13 

Left Bending 4.69 ± 2.75 4.82 ± 2.67 2.15 ± 0.82 

Right Rotation 1.09 ± 0.32 1.21 ± 0.36 0.85 ± 0.30 

Left Rotation 1.03 ± 0.22 1.10 ± 0.22 0.78 ± 0.30 
Note: Errors represent standard deviations 
*One specimen could not reach 8Nm for intact and laminectomy treatments, due to 
Machine Limitation. Therefore, n=5 for these two treatments for flexion motion. 

 

Table 4.5. Output Summary from One-Way ANOVA Test (α=0.05) when Comparing 
ROM (Degrees), at 8Nm, for All Treatments. 

 

 
Intact (n=6) /Laminectomy (n=6) / PSS (n=3) 

 
ANOVA (p-value) Tukey Duncan-Waller 

Extension 0.0630 ND C ≠ B 

Flexion* 0.0433 C ≠ B C ≠ A, C ≠ B 

Right Bending 0.3349 ND ND 

Left Bending 0.3075 ND ND 

Right Rotation 0.1921 ND ND 

Left Rotation 0.2038 ND ND 
Errors represent standard deviations 
A=Intact, B=Laminectomy, C=PSS 
ND=No Difference 
*n=5 for Intact and Laminectomy treatments for flexion motion 

 

Table 4.6. Percentage Change of Range of Motion. 
 

 
Laminectomy VS Intact 

(n=6) 
PSS VS Intact 

(n=3) 

Extension 24.08% ± 29.88% -35.43% ± 19.48% 

Flexion* 10.12% ± 13.20% -71.80% ± 0.16% 

Right Bending 8.08% ± 14.26% -42.26% ± 25.65% 

Left Bending 4.75% ± 4.42% -62.85% ± 6.00% 

Right Rotation 12.36% ± 9.85% -25.26% ± 10.97% 

Left Rotation 7.10% ± 6.59% -27.76% ± 19.23% 
Note: Errors represent standard deviations 
*One specimen could not reach 8Nm for intact and laminectomy treatments, due to 
a Machine Limitation. Therefore, n=5 for Intact and laminectomy treatments while 
n=2 for PSS treatment, for flexion motion. 
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Table 4.7. P-Values from One-Tailed T-Test (α=0.05) when Evaluating Change of ROM 
(Degrees) on Normalized Data (with Respect to Intact). 

 

 
P-VALUES (α=0.05) 

 
Intact VS Laminectomy 
(n=6, H0: μ≤1, α=0.05 ) 

Intact VS PSS 
(n=3, H0: μ≥1, α=0.05 ) 

Extension 0.0158 <0.0001 

Flexion* 0.0158 0.0027 

Right Bending 0.0740 0.0057 

Left Bending 0.0016 <0.0001 

Right Rotation 0.0011 0.4567 

Left Rotation 0.0013 0.0060 

*n=5 for Laminectomy VS Intact and n=2 for PSS VS Intact for flexion motion. 

 

In comparison to intact condition, the PSS showed a significant reduction in NZ 

for flexion-extension motion (p<0.004) while the effect of a laminectomy treatment was 

not significant for any motion (Figure 4.1). However, after normalizing the data, the 

change in NZ was significantly different (p<0.03) after both laminectomy and PSS 

treatments for flexion-extension (Figure 4.2). 

In terms of stiffness, the laminectomy decompression triggered a significant 

reduction on the dynamic neutral zone stiffness for extension (p<0.03), while PSS 

increased it significantly (p<0.05) for both flexion and extension (Figure 4.4). 

The changes in ROM were not statistically significant when compared to intact 

(Table 4.4) but after normalization of the data (Table 4.6), significant differences 

(p<0.05) were found for all motions after treating the FSU with a laminectomy 

decompression and PSS, except for right bending (after laminectomy decompression) 

and right rotation (after PSS). It is important to mention that high standard deviations 

where observed among normalized data. 
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4.2. Quasi-Static Testing Results 

The displacements measured for the three treatments under quasi-static loading 

are summarized in Figure 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 for extension, flexion, right and 

left bending, and right and left rotation, respectively. 

Likewise, Table 4.8, 4.9 and 4.10 present the statistical results from performing a 

one-way ANOVA test, followed by post-hoc tests Tukey and Ducan-Waller, on the 

displacements from quasi-static testing. 

 

 

 

Figure 4.5. Extension Displacements for Quasi-Static Loading (ƒ= 0.1Hz). 
 

 

 

 

1.50 Nm 3.00 Nm 4.50 Nm 6.00 Nm 7.50 Nm

Intact (n=6) 0.87 1.62 2.27 2.79 3.24

Laminectomy (n=6) 1.08 1.96 2.73 3.39 3.93

PSS (n=3) 0.29 0.62 0.97 1.32 1.67

0.00

1.00

2.00

3.00

4.00

5.00

6.00

A
n

g
le

 [
d

e
g

re
e
s

] 

All error bars represent ±SD 



www.manaraa.com

47 
 

 
 
Figure 4.6. Flexion Displacements for Quasi-Static Loading (ƒ= 0.1Hz). 
 

 

 
 
Figure 4.7. Right Bending Displacements for Quasi-Static Loading (ƒ= 0.1Hz). 
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Figure 4.8. Left Bending Displacements for Quasi-Static Loading (ƒ= 0.1Hz). 
 

 

 
 
Figure 4.9. Right Rotation Displacements for Quasi-Static Loading (ƒ= 0.1Hz).  
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Figure 4.10. Left Rotation Displacements for Quasi-Static Loading (ƒ= 0.1Hz). 
 
 
Table 4.8. Output Summary from One-Way ANOVA Test (α=0.05) Performed on Flexion 

and Extension Motions (Degree) for Quasi-Static Testing. 
 

 
Extension Flexion 

Moment 
[Nm] 

p 
value 

Tukey Duncan-Waller 
p 

value 
Tukey Duncan-Waller 

1.50 0.0571 C ≠ B C ≠ A 0.3649 ND ND 

3.00 0.0297 C ≠ B C ≠ B, C ≠ A 0.2530 ND ND 

4.50 0.0186 C ≠ B C ≠ B, C ≠ A 0.1221 ND ND 

6.00 0.0149 C ≠ B C ≠ B, C ≠ A 0.0275 C ≠ B C ≠ B, C ≠ A 

7.50 0.0124 C ≠ B C ≠ B, C ≠ A 0.033 C ≠ B C ≠ B, C ≠ A 
Note: Errors represent standard deviations 
A=Intact, B=Laminectomy, C=PSS 
ND=No Difference 

 
Table 4.9. Output Summary from One-Way ANOVA Test (α=0.05) Performed on Right 

and Left Bending (Degree) for Quasi-Static Testing. 
 

 
Right Bending Left Bending 

Moment 
[Nm] 

p 
value 

Tukey Duncan-Waller 
p 

value 
Tukey Duncan-Waller 

1.50 0.1570 ND ND 0.2023 ND ND 

3.00 0.2023 ND ND 0.3045 ND ND 

4.50 0.2999 ND ND 0.3787 ND ND 

6.00 0.4107 ND ND 0.4603 ND ND 

7.50 0.4971 ND ND 0.5158 ND ND 
Note: Errors represent standard deviations 
A=Intact, B=Laminectomy, C=PSS 
ND=No Difference 

1.50 Nm 3.00 Nm 4.50 Nm 6.00 Nm 7.50 Nm

Intact (n=6) 0.24 0.49 0.71 0.94 1.18

Laminectomy (n=6) 0.25 0.52 0.77 1.01 1.27

PSS (n=3) 0.17 0.37 0.55 0.73 0.91
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All error bars represent ±SD 
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Table 4.10. Output Summary from One-Way ANOVA Test (α=0.05) Performed on Right 
and Left Rotation (Degree) for Quasi-Static Testing. 

 

 
Right Rotation Left Rotation 

Moment 
[Nm] 

p 
value 

Tukey Duncan_Waller 
p 

value 
Tukey Duncan_Waller 

1.50 0.6837 ND ND 0.3401 ND ND 

3.00 0.4591 ND ND 0.3596 ND ND 

4.50 0.4458 ND ND 0.2879 ND ND 

6.00 0.3768 ND ND 0.2728 ND ND 

7.50 0.3183 ND ND 0.2596 ND ND 
Note: Errors represent standard deviations 
A=Intact, B=Laminectomy, C=PSS 
ND=No Difference 

 

Similarly, a one-tailed t-test (H0: μ≤1, α=0.05, d.f.=6) was conducted on 

normalized quasi-static data (with respect to intact) to evaluate the significance of 

changes in motion as a result of performing a laminectomy decompression on a lumbar 

FSU. This data is shown in Table 4.11 and outputs from statistical tests are presented in 

Table 4.12. 

 
Table 4.11. Percentage Change of Motion after Laminectomy Decompression (n=6). 
 

Moment [Nm] Extension Flexion 

1.50 25.15% ± 26.34% 15.52% ± 15.12% 

3.00 21.81% ± 24.94% 18.10% ± 17.26% 

4.50 21.26% ± 24.46% 19.15% ± 15.44% 

6.00 21.79% ± 22.76% 12.25% ± 12.23% 

7.50 21.33% ± 20.64% 15.96% ± 12.72% 

 
Right Bending Left Bending 

1.50 3.89% ± 23.18% 1.04% ± 14.22% 

3.00 3.53% ± 19.50% 6.92% ± 4.32% 

4.50 3.88% ± 17.52% 6.42% ± 4.94% 

6.00 4.08% ± 16.47% 6.22% ± 5.51% 

7.50 4.67% ± 15.52% 5.83% ± 6.20% 

 
Right Rotation Left Rotation 

1.50 9.47% ± 14.50% 11.44% ± 18.43% 

3.00 14.11% ± 5.59% 10.69% ± 12.96% 

4.50 10.62% ± 10.15% 10.25% ± 10.08% 

6.00 10.98% ±  9.73% 8.97% ± 7.57% 

7.50 8.65% ±  10.73% 9.47% ± 7.96% 
Note: Errors represent standard deviations 
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Table 4.12. P-Values from One-Tailed T-Test (H0: μ≤1, α=0.05, d.f.=6) when Comparing 
Change of ROM after Laminectomy Decompression with Intact Condition. 

 

Moment 
Extension Flexion 

Right Left Right Left 

[Nm] Bending Bending Rotation Rotation 

1.50 0.027 0.032 0.349 0.432 0.085 0.094 

3.00 0.025 0.043 0.338 0.006 0.001 0.050 

4.50 0.014 0.043 0.305 0.012 0.025 0.028 

6.00 0.029 0.033 0.285 0.020 0.020 0.017 

7.50 0.014 0.026 0.247 0.035 0.053 0.017 

  

Likewise, a one-tailed t-test (H0: μ≥1, α=0.05, d.f.=3) was performed to evaluate 

the change in ROM on a lumbar FSU triggered by PSS treatment. Normalized data is 

presented in Table 4.13 and results from statistical tests are shown in Table 4.14.  

 
Table 4.13. Percentage Change of Motion after PSS Treatment (n=3). 
 

Moment [Nm] Extension Flexion 

1.50 -57.75% ± 10.16% -38.93% ± 23.78% 

3.00 -54.22% ± 11.99% -48.74% ± 19.12% 

4.50 -51.16%  ± 12.84% -55.55% ± 16.27% 

6.00 -47.84% ± 12.77% -66.88% ± 7.81% 

7.50 -45.19% ± 12.81% -73.58% ± 5.66% 

 
Right Bending Left Bending 

1.50 -73.80% ± 11.62% -74.72% ± 1.84% 

3.00 -60.86% ± 18.30% -69.83% ± 1.72% 

4.50 -49.73% ± 22.98% -64.32% ± 3.85% 

6.00 -41.95% ± 25.38% -60.56% ± 5.62% 

7.50 -36.55% ± 26.64% -56.94% ± 6.66% 

 
Right Rotation Left Rotation 

1.50 -23.27% ± 26.39% -27.27%± 7.99% 

3.00 -24.08% ± 10.78% -24.37% ± 9.77% 

4.50 -24.55%  ± 5.75% -24.70% ± 14.62% 

6.00 -24.83% ± 10.68% -24.53% ± 19.21% 

7.50 -29.59% ± 12.49% -25.60% ± 24.51% 
Note: Errors represent standard deviations 
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Table 4.14. P-Values from One-Tailed T-Test (H0: μ≥1, α=0.05, d.f.=3) when Comparing 
Change of ROM after PSS with Intact Condition. 

 

Moment 
Extension Flexion 

Right Left Right Left 

[Nm] Bending Bending Rotation Rotation 

1.50 0.053 0.005 0.004 <0.001 0.133 0.014 

3.00 0.024 0.008 0.014 <0.001 0.030 0.025 

4.50 0.014 0.010 0.032 <0.001 0.009 0.050 

6.00 0.002 0.012 0.052 <0.001 0.028 0.079 

7.50 0.001 0.013 0.070 <0.001 0.027 0.106 

 

In general terms, laminectomy decompression seems to cause instability on a 

lumbar FSU, while fusion (PSS) limits the ROM beyond intact (anatomical) condition. 

These behaviors were observed during all quasi-static tests (Figure 4.5 to 4.10) for all 

motions, with the exception of left bending at 1.5Nm after a laminectomy 

decompression. Any of the differences in ROM triggered by either a laminectomy 

decompression or PSS treatment were statistically significant (p>0.05). However, once 

data was normalized, these differences became significant for flexion and extension at 

any load (with the exception of PSS at 1.5Nm –Table 4.14) and for all other motion at 

some specific loads; although high standard deviations were encountered. 
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CHAPTER 5: DISCUSSION 

 

For this research, only 6 FSUs met the criteria for this study: one L1-L2, one L2-

L3, one L3-L4, one L4-L5 and two L5-S1 segments. Given the limited number of 

samples from different specimens for the same level, it was not possible to evaluate any 

effect related to the spinal level. This fact makes difficult to lead strong conclusions 

about the biomechanical effects of performing a laminectomy decompression on a 

lumbar FSU. However, some useful biomechanical observations and conclusions can 

still be provided. 

A study conducted by Gay et al. (2006) on dynamic and quasi-static 

biomechanics of lumbar FSUs also recognizes the limitation of having FSUs from 

multiple lumbar spinal levels. However, they only used one L5-S1 segment (from 15 

FSUs), which has been shown to have different biomechanical behavior than other 

lumbar levels, they addressed. For our study, two L5-S1 FSUs were used, which 

represents 33.3% of our samples. 

One-way ANOVA, followed by post-hoc Tukey and Duncan-Waller tests, was 

performed to evaluate the difference in ROM for both dynamic and quasi-static data, as 

well as the effect of these treatments on dynamic NZ and NZS. Additionally, data was 

normalized (with respect to intact) and these ratios (laminectomy/intact and PSS/intact) 

were tested to be statistically significant different from 1 (intact/intact), by using two-

tailed t-test (for estimating changes on dynamic NZ and NZS) and one-tailed t-test (for 

analyzing changes in ROM).  
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This additional analysis of using ratios was initially considered a better approach 

for analyzing the data since we were dealing with different spinal levels, and our number 

of sample was limited (n=6). It is well recognized that comparing ratios implicitly 

considers the assumption of the effects of the treatments being the same for all spinal 

levels, which could be seen as an important limitation. The concern about the veracity of 

this assumption arose when recognizing large standard deviations for normalized data 

(as shown in Table 4.6 and 4.11). This large variability could be either due to particular 

characteristics of the specimens, which become remarkable when having a small 

sample (6 FSU from 4 specimens), or due to the effects of the treatments being, in fact, 

different for each spinal level. This last hypothesis would contradict our initial assumption 

but we certainly acknowledge that the only accurate way for testing this possibility would 

be by performing a study with a larger number of FSUs from different lumbar spinal 

levels. Thus, specimens could be grouped by level and be compared. 

Even though further studies are necessary to validate the results presented on 

this work, important considerations that need to be addressed before performing any 

biomechanical spine testing were identified. They are: 

 Time specimen has been exposed to room temperature. It is important to 

carefully report how long the specimen has been out of the freezer. Even though 

thawing out the specimen at room temperature has been shown to have little 

effect on the biomechanical behavior of a disc and bone, over time exposure 

could have considerable effects on the specimen’s properties (Wilke, Wenger & 

Claes, 1998). In this study, the exposure time could have affected bone 

specimen’s condition, being a possible explanation for not being able to perform 

PSS on 3, of the 6, FSUs. Even though testing time (including all treatments) was 

reasonable for a specimen than underwent the three treatments (less than 7 
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hours), thawing, disarticulating and potting time (Table 3.1) could have been 

reduced. It is important to mention that our protocol was in line with previous 

publications which have reported thawing periods of 24hrs (Voronov et al., 2009). 

Moreover, all specimens satisfied a minimal bone mineral density (>0.070 

gr/cm2), however it is important to mention that the 3 FSUs where PSS were 

performed came from the donor that had the higher BMD (1.111 gr/cm2). This 

may suggest the request of more than one test for measuring BMD, or being 

more conservative when selecting the inclusion parameter. Previous in vivo study 

has shown there is a stretch relationship between BMD and failure of pedicle 

screws fixation for values below 0.674 ± 0.104 g/cm2 (Okuyama et. al, 2001). 

Even though our inclusion parameter was BMD>0.700g.cm2, it is suggested to be 

more conservative in further studies since in vitro conditions could be considered 

more critical for bone degradation. 

 Preconditioning. It is necessary to precondition the specimen to minimize 

viscoelastic behavior and obtain reproducible data (Wilker, Wenger & Claes, 

1998). In our case, we summited the specimen to 8 steps during the first dynamic 

testing and only the last step was considered for the analysis. 

 Zero positions. It is important to be consistent with the “zero mark” (initial 

position-degrees) in order to make measurements comparable. It is 

recommended not to change the reference system any time during testing. If 

there is a well understanding of the process, the data can always be referenced 

to a different coordinate system after collected. Changing our “zero mark” during 

testing could potentially incur important errors. Moreover, the NZ is defined for 

each specimen and for each treatment, and the loading history of the specimen 

could change its magnitude; therefore, it is important to report under what 
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condition(s) this parameter is estimated. Although the NZ concept has been 

widely used for quasi-static data, this could be an important parameter for 

dynamic testing. Dynamic and Quasi-Static data should be carefully 

distinguished. 

 Disc Condition. The condition and hydration of the intervertebral disc is 

determinant for the motion’s pattern during loading. A specimen with an evident 

osteophyte disc (L3-L4) was tested (data not included for analysis) and the ROM 

for intact condition during dynamic testing (±8Nm, 0.125Hz) was observed limited 

(1.5 and <1.5 degrees for flexion and extension, respectively), presumably 

related to disc’s condition. The high stiffness of the disc may have not allowed 

the laminectomy effects be significant since the motion was already preceded, in 

a higher portion than normal, by the condition of the disc. In this sense, when 

testing any treatment that may cause destabilization, it is important to evaluate 

and report the condition of all joints and ligaments of the spinal segment, to avoid 

results being misleading. From this experience, it is suggested to incorporate 

intradiscal pressure sensors during spinal testing to evaluate the performance of 

the disc at any time, and combine this information with displacements data to 

support any biomechanical conclusion. This procedure was attempted during this 

work by placing miniature pressure transducers (Model 060; Precision 

Measurement Company, Ann Arbor, MI) in the nucleus of the FSU, through the 

mid-sagittal plane, but not enough data was gathered to be presented. The 

transducer moved during testing, which required testing different techniques for 

implanting the sensor into the specimen. The final and most accurate technique 

consisted on inserting a 2mm of diameter cannula through the mid-sagittal plane 

into the disc. Then, a sewing thread was notched to the wire of the transducer by 
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making multiple knots (one over the other) which would prevent the knots go 

through the 2mm cannula. The other end of the thread had a needle which was 

inserted through the cannula. Once the needle would leave the disc, it was 

carefully pulled until the sensor would reach the middle of the nucleus. At this 

point, the cannula was removed and the sensor’s performance was evaluated by 

observing its reading when manually moving the specimen in different directions. 

Then, one end of the sewing thread would be hold in place by the multiple knots 

(by preventing penetration of the knots into the disc) while the other end was 

gently tensioned and taped to the upper frame of the FSU (after removing the 

needle). In this sense, we reduced significantly the misplaced of the sensor 

(caused by internal pressure changes) during testing. Thus, accurate readings of 

the pressure at the nucleus were achieved. From this preliminary data, a 

presumable correlation was observed: laminectomy decompression triggers a 

pressure increase in the nucleus of the FSU for flexion and extension motions. 

Animal models have shown there is a significant pressure increase in the nucleus 

after laminectomy for flexion and lateral bending motions, while there is no 

significant increase for extension and axial rotation (Rao et al., 2002). Further 

studies are necessary to objectively evaluate the effects of a laminectomy on the 

intradiscal pressure, having a constant monitoring of the sensor’s position. 

 Orientation of FSU. Potting procedure depends on the final configuration the 

specimen will adopt on the machine since its orientation will be determined by 

the right distribution of the load on the sample. A recent study conducted by 

Campbell-Kyureghyan et al. (2011) has shown how segment orientation has an 

important effect on failure strength, stress and strain. Then, it is important to 

report the orientation of the specimen and the distribution of the load during 
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testing, even when the data is normalized. Also, once the specimen has been 

potted, it is important to let the polyester resin frames cool down enough before 

testing to avoid any relative motion between the specimen and the frames.  

 

It is important to recognize that saline solution is the most common solution used 

for keeping spine cadaveric models moist, and during this work the solution used for this 

application was distilled water. This could have speeded up the degradation of the 

tissues, although any study to support this hypothesis was found. 

Acknowledging that all factors mentioned above could have a significant effect on 

the variability of the data, important observations related to specific tests performed 

during this work are mentioned below.  

 

5.1. Dynamic Testing 

The Neutral Zone (NZ) is usually measured during quasi-static testing as the 

residual deformation achieved 30s after removing a define load (Gay et al., 2006). It has 

been addressed that the size of the NZ may vary with the loading history of the 

specimen, although the relationship of this quasi-static factor with dynamic parameters is 

not well-known (Gay et al., 2006). We have measured the NZ from dynamic testing data 

and the loading history of each specimen before testing could be considered the same, 

since we always performed all tests in the same order and allowed the specimen to rest 

between treatments (while performing either a laminectomy or PSS procedure). 

In one hand, Figure 4.1 shows how a laminectomy may have an effect on the 

dynamic neutral zone of a lumbar FSU during flexion-extension motion but Table 4.1 

supports that there is not enough evidence to conclude the differences are statistically 

significant, when using a significance level of .05. However, PSS treatment showed to 
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have a significant effect on the size of the dynamic neutral zone for flexion-extension 

motion, while for lateral bending showed to be larger than intact and laminectomy 

conditions. Two possible explanations for this phenomenon could be that, one, this 

treatment was performed in 3 of the 6 FSUs (which means the average presented for 

this treatment was from 3 samples, while for intact and laminectomy were calculated 

from 6 FSUs) and, two, the exposure time could have also affected tissue integrity, 

specially bone quality that could have impacted PSS fixation. 

On the other hand, normalized data (Figure 4.2) showed there is a significant 

effect of both treatments on the dynamic NZ for flexion-extension motion (p<0.05), as 

shown in Table 4.2. If we assume there are significant differences within the 

biomechanics of different spinal levels, the variation within the results, between non-

normalized data (Table 4.1) and normalized data (Table 4.2), may be due to the fact of 

taking an average from different spinal levels for non-normalized data (Figure 4.1). Most 

spinal biomechanics studies involve multisegmental spine specimens or FSUs that are 

used to compare different treatments against intact (control) conditions, but it is not a 

concern if there is any difference when testing individual FSUs from different spinal 

levels. Some studies have evaluated the effects of specimen length on monosegmental 

motion behavior (Kettler et al., 2000) but no study that evaluates the difference within 

spinal levels when tested alone has been found.  

The change in dynamic Neutral Zone Stiffness (NZS) for dynamic flexion-

extension was significant (p<0.05), except for flexion after laminectomy treatment, as 

shown in Table 4.3. The results here obtained where fusion increases segmental 

stiffness for flexion-extension motion, when compared to intact condition, has been 

shown in previous studies (Phillips et al., 2009). It is important to mention some studies 

wrongly refer to the neutral zone stiffness as the slope of the linear portion of a load-
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displacement curve (Wilke et al., 1998; Phillips et al, 2009). The slope actually measures 

flexibility (i.e. degree/moment) while its inverse is what represents stiffness values (i.e. 

moment/degree).  

The decrease in stiffness for extension, as well as the increase in the NZ for 

flexion-extension motion, after destabilization (i.e. laminectomy decompression) implies 

a higher stress on spinal segment, which may lead to pain due to a higher demand on 

musculature activity in order to maintain stability during daily motion (Phillips et al., 

2009). 

Regarding ROM analysis, some discrepancy was observed between non-

normalized and normalized data, as it was for dynamic NZ analysis. Table 4.5 shows 

there is not enough evidence to presume that any of the two treatments have an effect 

on intact condition, while Table 4.7 supports the effect of a laminectomy being 

statistically significant (p<0.05) for all motions, except for right bending (p=0.074). The 

results from normalized data for PSS treatment for flexion motion (Table 4.7) are not 

conclusive since only two samples were used for this case; a physical limitation of the 

testing machine did not allowed testing one of the specimens under intact and 

laminectomy conditions at 8Nm. 

 

5.2. Quasi-Static Testing 

From Figure 4.5 to Figure 4.10 it can be seen how the average displacement for 

all loading and motions increased after performing a laminectomy decompression 

(except for left bending at 1.5Nm) and decreased after implementation of PSS, when 

compared to intact condition. The large standard deviation may be a consequence of 

using different spinal levels or to intrinsic characteristics of the specimens that are 

remarked when using a small number of samples. When evaluating the changes in ROM 
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after the laminectomy decompression, there was not enough evidence to presume its 

effect being significant for any motion, when compared to intact condition (Table 4.8, 4.9 

and 4.10). However, according to the output from a Duncan-Waller post-hoc test, PSS 

may have an effect on intact conditions for extension and flexion motions, at specific 

loadings: 3.0, 4.5, 6.0 and 7.5Nm for extension and 6.0 to 7.0 Nm for flexion. An 

important limitation of Duncan-Waller post-hoc test is the lack of controlling Type I error, 

which could wrongly accept the null hypothesis of no difference between the means, 

which becomes more critical when having a small number of samples. 

An important observation is that the ROM of the destabilized segment was closer 

to intact than when treated with PSS. This may be one of the reasons why there are 

different opinions about fusion being a good optional treatment after decompression. 

After normalizing ROM data and comparing the effects of the laminectomy and 

PSS treatments with intact condition, results indicated significant differences, at more 

than one loading condition, for all motions (p<0.05), except for right bending after 

performing the laminectomy (Table 4.12). These results were consistent with dynamic 

ROM discussed above. Furthermore, PSS seemed to significantly limit (p<0.05) the 

ROM for most loading conditions under all motions (Table 4.14). 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

When testing spine biomechanics it is important to report all variables that may 

have an effect on the results. Among the most important variables found during this work 

were: exposure time of the specimen to room temperature, preservation and testing 

conditions (i.e. temperatures), inclusion parameters (i.e. sample characterization), 

ligaments and joint conditions, testing protocol and loading history.  

The most important limitation found during this work was having a small number 

of FSUs from different spinal levels. On one hand, knowing that different spinal levels 

could have different biomechanical properties made difficult to study them altogether. On 

the other hand, normalizing this data brings the assumption of the effects of all 

treatments (laminectomy and PSS) being the same for all spinal levels. The high 

standard deviation observed among normalized data may suggest this assumption is 

improper, although this large variability could also be consequence of having a small 

number of samples (6 FSUs). Further studies should consider a power analysis to 

determine a reasonable number of FSUs from different spinal levels to evaluate these 

hypotheses. From this pilot study, an educated estimation of number of samples would 

be 6 whole lumbar spines (which lead to 18 FSUs, 6 from each spinal level). 

This pilot study suggests there may be a considerable effect of the laminectomy 

on the stability of a lumbar FSU. Dynamic data suggested the changes in neutral zone 

stiffness may be significant for extension motion after performing a laminectomy, when 

compared to intact condition. PSS showed to increase segment’s stiffness by 
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more than double. Moreover, changes in quasi-static displacements caused by a 

laminectomy decompression may be significant as well, especially for flexion (20%) and 

extension (greater than 10%).  

In vitro studies provide valuable information but long-term consequences should 

not be underestimated. For this reason, in vitro studies should be integrated with in vivo 

studies (i.e. retrospective studies), when possible. Even if further in vitro studies show 

there is no significant destabilization of the spine after performing a laminectomy 

decompression, there are clinical studies that have shown that decompressive 

laminectomy may contribute to segmental instability which forces some patients to go 

back to surgery looking for a stabilization system. This fact could have several reasons 

but should be, indeed, considered before making any strong conclusion about the effects 

of this treatment on the stability of the spine. 

It is recommended that further studies that aim to evaluate the effects of a 

laminectomy decompression in cadaveric human models include multisegmental spinal 

samples (at least 6 complete lumbar spines) since these more closely resemble in vivo 

situations. Moreover, this would allow analyzing the contribution of this surgical 

procedure in adjacent levels. These segments could be later dissected in FSUs (about 

18 FSUs from 6 lumbar spines) and tested individually to have more information about 

this treatment.  
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Appendix A. Permissions 

 

 

Figure A.1. Copyright Permission for Figures 2.10 and 2.11 
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Appendix B. Original (Raw) Data 

Table B.1. Dynamic Extension and Flexion Data. 
 

  
EXTENSION FLEXION 

Specimen Treatment 
Moment 

[Nm] 
Displacement 

[degree] 
Moment 

[Nm] 
Displacement 

[degree] 

1 Intact 7.96 2.57 8.00 4.67 

2 Intact 8.04 2.21 7.78 4.77 

3 Intact 7.98 3.09 
  

4 Intact 8.03 2.11 7.94 3.28 

5 Intact 7.91 2.42 7.97 5.93 

6 Intact 7.92 4.07 7.97 7.80 

1 Laminectomy 7.93 3.04 7.94 5.24 

2 Laminectomy 7.97 2.35 7.57 4.42 

3 Laminectomy 8.00 3.39 
  

4 Laminectomy 7.99 2.25 7.86 3.58 

5 Laminectomy 7.92 4.45 7.96 7.82 

6 Laminectomy 7.99 4.88 7.90 8.85 

1 PSS 8.08 1.11 7.96 1.31 

2 PSS 7.96 1.52 7.95 1.35 

3 PSS 7.95 2.53 7.99 1.87 

1 Intact 7.47 2.41 7.45 4.38 

2 Intact 7.45 1.99 7.58 4.47 

3 Intact 7.43 2.80 7.56 11.64 

4 Intact 7.55 1.98 7.51 3.12 

5 Intact 7.55 2.27 7.58 5.77 

6 Intact 7.54 3.95 7.54 7.62 

1 Laminectomy 7.40 2.83 7.49 4.95 

2 Laminectomy 7.45 2.10 7.57 4.42 

3 Laminectomy 7.49 3.15 7.03 11.81 

4 Laminectomy 7.59 2.11 7.54 3.24 

5 Laminectomy 7.55 4.30 7.55 7.67 

6 Laminectomy 7.34 4.59 7.47 8.71 

1 PSS 7.58 1.94 7.45 1.21 

2 PSS 7.51 1.38 7.49 1.24 

3 PSS 7.45 1.54 7.55 1.72 
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Appendix B (Continued) 
 
Table B.2. Dynamic Lateral Bending Data. 
 

  
RIGHT BENDING LEFT BENDING 

Specimen Treatment 
Moment 

[Nm] 
Displacement 

[degree] 
Moment 

[Nm] 
Displacement 

[degree] 

1 Intact 7.97 4.27 7.98 6.01 

2 Intact 7.90 4.66 7.84 8.13 

3 Intact 8.00 4.85 8.06 3.39 

4 Intact 7.94 2.38 7.95 1.53 

5 Intact 7.95 2.19 7.99 2.04 

6 Intact 7.92 7.46 7.94 7.03 

1 Laminectomy 7.96 4.15 7.94 6.24 

2 Laminectomy 7.99 5.11 7.93 7.99 

3 Laminectomy 7.96 5.23 7.96 3.63 

4 Laminectomy 7.98 2.23 8 1.70 

5 Laminectomy 7.95 2.94 8.01 2.17 

6 Laminectomy 7.93 7.89 7.92 7.17 

1 PSS 7.92 2.88 7.9 2.64 

2 PSS 7.96 3.60 7.92 2.62 

3 PSS 8.05 1.39 8.02 1.20 

1 Intact 7.44 4.07 7.54 5.77 

2 Intact 7.65 4.50 7.46 7.95 

3 Intact 7.46 4.58 7.46 3.19 

4 Intact 7.43 2.23 7.57 1.44 

5 Intact 7.58 2.10 7.48 1.92 

6 Intact 7.51 7.22 7.51 6.78 

1 Laminectomy 7.45 3.90 7.5 6.22 

2 Laminectomy 7.51 4.92 7.47 7.79 

3 Laminectomy 7.48 4.98 7.56 3.47 

4 Laminectomy 7.51 2.08 7.47 1.56 

5 Laminectomy 7.5 2.80 7.51 2.05 

6 Laminectomy 7.47 7.52 7.54 6.92 

1 PSS 7.65 2.71 7.44 2.65 

2 PSS 7.54 3.34 7.44 2.45 

3 PSS 7.46 1.24 7.42 1.07 
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Appendix B (Continued) 
 
Table B.3. Dynamic Axial Rotation Data. 
 

  
RIGHT ROTATION LEFT ROTATION 

Specimen Treatment 
Moment 

[Nm] 

Displacement 

[degree] 

Moment 

[Nm] 

Displacement 

[degree] 

1 Intact 8.12 1.48 7.95 1.30 

2 Intact 7.99 1.06 7.98 1.11 

3 Intact 8.00 0.86 8.06 0.83 

4 Intact 8.00 1.37 8.00 1.20 

5 Intact 8.03 0.61 8.03 0.71 

6 Intact 8.02 1.15 8.01 1.03 

1 Laminectomy 7.90 1.80 7.89 1.40 

2 Laminectomy 7.97 1.12 7.95 1.11 

3 Laminectomy 7.94 0.98 7.97 0.97 

4 Laminectomy 8.00 1.42 8.06 1.20 

5 Laminectomy 8.03 0.77 8.04 0.75 

6 Laminectomy 8.09 1.18 8.01 1.16 

1 PSS 7.9 1.20 7.92 1.12 

2 PSS 7.99 0.66 8.07 0.56 

3 PSS 7.90 7.90 7.97 0.67 

1 Intact 7.48 1.44 7.49 1.22 

2 Intact 7.45 0.99 7.63 1.03 

3 Intact 7.43 0.80 7.55 0.84 

4 Intact 7.55 1.29 7.45 1.11 

5 Intact 7.51 0.57 7.51 0.65 

6 Intact 7.46 1.04 7.45 0.96 

1 Laminectomy 7.54 1.72 7.55 1.33 

2 Laminectomy 7.48 0.97 7.51 1.03 

3 Laminectomy 7.43 0.91 7.54 0.90 

4 Laminectomy 7.46 1.37 7.43 1.13 

5 Laminectomy 7.51 0.72 7.51 0.70 

6 Laminectomy 7.49 1.10 7.55 1.07 

1 PSS 7.55 1.11 7.42 1.02 

2 PSS 7.48 0.62 7.67 0.55 

3 PSS 7.42 0.65 7.52 0.60 
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Appendix B (Continued) 
 
Table B.4. Quasi-Static Flexion and Extension Data. 
 

    FLEXION EXTENSION 

ID 
Moment 

[Nm] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 

1 

7.50 

5.21 6.01 1.50 3.10 3.64 1.25 

2 5.22 4.98 1.59 2.81 3.01 1.67 

3 11.07 14.40 2.21 3.25 4.20 2.10 

4 3.90 4.34   2.50 2.54   

5 6.90 8.87   3.00 4.77   

6 8.50 9.80   4.78 5.44   

1 

6.00 

4.31 5.05 1.11 2.66 3.16 1.00 

2 3.00 2.81 1.24 2.32 2.45 1.33 

3 5.20 5.51 1.68 2.67 3.51 1.65 

4 3.25 3.63   2.17 2.19   

5 6.34 8.25   2.60 4.24   

6 7.92 9.10   4.33 4.82   

1 

4.50 

3.02 3.53 0.79 2.14 2.53 0.73 

2 1.86 1.81 0.92 1.80 1.87 0.97 

3 2.07 2.92 1.19 2.08 2.78 1.21 

4 2.55 2.84   1.74 1.75   

5 5.66 7.47   2.13 3.50   

6 7.12 8.29   3.70 3.97   

1 

3.00 

1.62 1.84   1.50 1.78 0.48 

2 1.11 1.07   1.21 1.26 0.62 

3 1.12 1.58   1.42 1.93 0.77 

4 1.76 1.84 0.49 1.16 1.21   

5 4.62 6.25 0.61 1.57 2.60   

6 5.90 6.92 0.76 2.87 2.95   

1 

1.50 

0.67 0.73   0.77 0.92 0.24 

2 0.45 0.42   0.61 0.65 0.30 

3 0.44 0.60   0.73 1.00 0.35 

4 0.74 0.82 0.23 0.53 0.60   

5 2.25 2.92 0.31 0.89 1.53   

6 3.37 3.90 0.36 1.71 1.75   
*ID=Specimen IID 
INT=Intact 
LD=Laminectomy Decompression 
PSS=Pedicle Screw System 
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Appendix B (Continued) 
 
Table B.5. Quasi-Static Lateral Bending Data. 
 

  
RIGHT BENDING LEFT BENDING 

ID 
Moment 

[Nm] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 

1 

7.50 

4.87 3.92 3.58 6.70 7.09 3.40 

2 5.23 5.60 4.37 9.00 8.77 3.50 

3 5.11 5.64 1.70 3.70 4.03 1.46 

4 2.60 2.51 
 

1.80 2.06 
 

5 2.44 3.10 
 

2.33 2.52 
 

6 8.10 8.62 
 

7.94 7.95 
 

1 

6.00 

4.22 3.27 2.86 5.89 6.34 2.69 

2 4.61 4.93 3.55 8.14 8.03 2.84 

3 4.44 4.88 1.30 3.09 3.39 1.17 

4 2.21 2.11 
 

1.49 1.67 
 

5 2.14 2.71 
 

1.98 2.15 
 

6 7.07 7.63 
 

6.98 6.99 
 

1 

4.50 

3.51 2.59 2.09 5.06 5.49 2.00 

2 3.87 4.20 2.60 7.13 7.10 2.26 

3 3.72 4.09 0.90 2.50 2.72 0.89 

4 1.75 1.68 
 

1.16 1.29 
 

5 1.80 2.26 
 

1.62 1.78 
 

6 5.94 6.45 
 

5.91 5.96 
 

1 

3.00 

2.71 1.84 1.25 3.87 4.19 1.23 

2 2.97 3.30 1.57 5.50 5.62 1.56 

3 2.94 3.24 0.54 1.77 1.93 0.54 

4 1.13 1.10 
 

0.75 0.82 
 

5 1.39 1.73 
 

1.18 1.33 
 

6 4.60 5.05 
 

4.58 4.64 
 

1 

1.50 

1.65 0.97 0.53 2.17 2.18 0.55 

2 1.74 2.03 0.59 2.89 2.44 0.78 

3 1.78 2.01 0.23 0.95 1.06 0.22 

4 0.46 0.48 
 

0.38 0.41 
 

5 0.76 0.93 
 

0.65 0.77 
 

6 2.80 3.08 
 

2.82 2.36 
 

*ID=Specimen IID 
INT=Intact 
LD=Laminectomy Decompression 
PSS=Pedicle Screw System 
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Appendix B (Continued) 
 
Table B.6. Quasi-Static Axial Rotation. 
 

  
RIGHT ROTATION LEFT ROTATION 

ID 
Moment  

[Nm] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 
INT 

[degree] 
LD 

[degree] 
PSS 

[degree] 

1 

7.50 

1.70 2.01 1.35 1.50 1.58 1.31 

2 1.30 1.25 0.73 1.30 1.30 0.60 

3 1.09 1.12 0.82 0.90 1.06 0.81 

4 1.60 1.72 
 

1.47 1.50 
 

5 0.69 0.86 
 

0.75 0.87 
 

6 1.37 1.40 
 

1.15 1.33 
 

1 

6.00 

1.41 1.67 1.06 1.20 1.25 1.03 

2 1.01 0.99 0.65 0.99 1.05 0.53 

3 0.76 0.87 0.65 0.72 0.86 0.62 

4 1.37 1.47 
 

1.22 1.21 
 

5 0.55 0.68 
 

0.61 0.67 
 

6 1.10 1.15 
 

0.91 1.05 
 

1 

4.50 

1.11 1.35 0.81 0.90 0.94 0.77 

2 0.76 0.71 0.55 0.75 0.81 0.44 

3 0.57 0.66 0.46 0.53 0.66 0.44 

4 1.12 1.20 
 

0.97 0.93 
 

5 0.42 0.49 
 

0.45 0.51 
 

6 0.79 0.87 
 

0.65 0.77 
 

1 

3.00 

0.81 1.00 0.54 0.62 0.63 0.52 

2 0.45 0.49 0.40 0.50 0.53 0.33 

3 0.39 0.45 0.29 0.35 0.46 0.28 

4 0.80 0.88 
 

0.73 0.68 
 

5 0.29 0.31 
 

0.30 0.34 
 

6 0.47 0.56 
 

0.41 0.50 
 

1 

1.50 

0.48 0.44 0.27 0.30 0.29 0.24 

2 0.19 0.23 0.20 0.23 0.24 0.15 

3 0.20 0.22 0.14 0.17 0.23 0.13 

4 0.37 0.39 
 

0.39 0.34 
 

5 0.15 0.15 
 

0.13 0.17 
 

6 0.17 0.21 
 

0.19 0.24 
 

*ID=Specimen IID 
INT=Intact 
LD=Laminectomy Decompression 
PSS=Pedicle Screw System 
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